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Abstract
Using the 16HBE 14o- human airway epithelial cell culture model, calcitriol 
(Vitamin D) was shown to improve barrier function by two independent metrics 
– increased transepithelial electrical resistance (TER) and reduced transepithelial 
diffusion of 14C-D-mannitol (Jm). Both effects were concentration dependent and 
active out to 168 h post-treatment. Barrier improvement associated with changes 
in the abundance of specific tight junctional (TJ) proteins in detergent-soluble 
fractions, most notably decreased claudin-2. TNF-α-induced compromise of 
barrier function could be attenuated by calcitriol with a concentration depend-
ence similar to that observed for improvement of control barrier function. TNF-
α-induced increases in claudin-2 were partially reversed by calcitriol. The ERK 
1,2 inhibitor, U0126, itself improved 16HBE barrier function indicating MAPK 
pathway regulation of 16HBE barrier function. Calcitriol's action was additive 
to the effect of U0126 in reducing TNF- α -induced barrier compromise, suggest-
ing that calcitriol may be acting through a non-ERK pathway in its blunting of 
TNF- α – induced barrier compromise. This was supported by calcitriol being 
without effect on pERK levels elevated by the action of TNF-α. Lack of effect of 
TNF- α on the death marker, caspase-3, and the inability of calcitriol to decrease 
the elevated LC3B II level caused by TNF-α, suggest that calcitriol's barrier im-
provement does not involve a cell death pathway. Calcitriol's improvement of 
control barrier function was not additive to barrier improvement induced by reti-
noic acid (Vitamin A). Calcitriol improvement and protection of airway barrier 
function could in part explain Vitamin D's reported clinical efficacy in COVID-19 
and other airway diseases.
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1   |   INTRODUCTION

There is now substantial published literature indicating 
that the current COVID-19 epidemic is associated with an 
inverse correlation between Vitamin D status and COVID 
infection rates and severity. Patients exhibiting Vitamin 
D deficiency were 5-fold more likely to manifest infec-
tion after adjusting for age (Katz et al., 2021). Deficiency 
also correlated with in-patient mortality rates (Infante 
et al.,  2021). The clinical data are less clear regarding 
Vitamin D supplementation (with frequent calls in the lit-
erature for expanded clinical trials [Murdaca et al., 2020]) 
but the highly favorable risk/benefit ratio for this micro-
nutrient prompted recommendations for its immediate 
clinical use (Brenner & Schöttker,  2020). This current 
SARS-CoV-2-driven interest in Vitamin D draws from a 
past interest in Vitamin D therapeutic and prophylactic 
utility for respiratory viruses in general. For a wide array 
of respiratory infections, serum levels of Vitamin D were 
observed to correlate with a decreased risk of infection 
(Sabetta et al., 2010). Notably, Vitamin D supplementation 
blunted inflammatory responses to influenza virus result-
ing in lower levels of TNF-α, IL-6, IL-8, and IFN-ɤ. These 
are all proinflammatory cytokines that would likely com-
promise airway barrier function and potentiate the clini-
cal effects of a respiratory infection (Hayashi et al., 2020; 
Khare et al., 2013). To summarize, there is abundant and 
growing clinical interest in Vitamin D utility in respiratory 
infections- most pointedly with COVID-19- that warrant 
further basic research into how Vitamin D might exert 
therapeutic and/or prophylactic benefit.

The importance of the role of a robust epithelial bar-
rier in combating infectious diseases has been recognized 
in an ever-increasing number of reviews on the subject 
(Groeger & Meyle, 2015; Guttman & Finlay, 2009; Mullin, 
Agostino, et al.,  2005; Sawada,  2013; Torres-Flores & 
Arias, 2015). Epithelial cell layers with their lynchpin tight 
junctional (TJ) complexes are obvious obstacles to infec-
tious microorganisms. Less obvious are the mechanisms 
that these microorganisms have evolved to selectively tar-
get and damage the TJ complex and thereby compromise 
the barrier. From viruses to bacteria to dust mites, the TJ 
complex – and with it the barrier is perhaps the most com-
mon structural target in microbial infection. This is as true 
for the airway epithelium as it is for any other epithelial 
tissue (Inoue et al., 2020).

Modifying the TJ complex and improving barrier 
function have thus become potential prophylactic if not 
therapeutic options in airway infectious disease and dis-
eases targeting epithelial barriers in general (Colpitts & 
Baumert, 2017; Krug et al., 2014; Valenzano et al., 2015).

In the past decade there has been an explosive increase 
in reports describing the ability of select micronutrients to 

structurally modify TJs and improve their barrier function 
(Bücker et al., 2020; Lee et al., 2019; Mohanty et al., 2020; 
Vargas-Robles et al., 2019; Yamada & Kanda, 2019).

In addition, this has included the ability of select mi-
cronutrients to reduce the damaging effects of different 
aspects of the disease state on barrier function, such as 
the proinflammatory cytokine cascade (Krug et al., 2014). 
Vitamin D has been no exception here, with reports de-
scribing its ability to improve/protect barrier function in 
retinal, intestinal, and urinary bladder epithelial models 
(Fernandez-Robredo et al., 2020; Lee et al., 2019; Mohanty 
et al., 2020). Specific effects of Vitamin D on airway bar-
rier function have also been described (Chen et al., 2018; 
Li et al., 2015; Ma et al., 2020).

The 16HBE human cell culture provides at conflu-
ence a polar, differentiated, airway epithelial model with 
well-described barrier properties, even though its sub-
confluent, cycling cells are poorly differentiated and non-
polar (Callaghan et al.,  2020; Cozens et al.,  1994; Haws 
et al., 1992; Uddin et al., 2008). Among their most notable 
differentiated characteristics are cell polarity with a mi-
crovillous apical cell surface (Zhu et al.,  1999), apically 
situated tight junctions (Chowdhury et al., 2010), transep-
ithelial voltage, short circuit current, substantial electrical 
resistance (Haws et al., 1992), and an apical CFTR chloride 
channel with transepithelial and unidirectional chloride 
secretion (Wine et al., 1994). Although 16HBE lacks true 
cilia expression, it does express the TRPV4 cation channel 
known to regulate cilia movement (Alenmyr et al., 2014). 
A wide range of investigators have extensively utilized 
16HBE cell layers as models for airway function and in 
airway disease studies (Callaghan et al.,  2020; Durgan 
et al.,  2015; Sekiyama et al.,  2012; Shintani et al.,  2015; 
Sweerus et al.,  2017; Xatzipsalti & Papadopoulos,  2007). 
This current study represents an investigation of Vitamin 
D improvement of barrier function of this airway ep-
ithelial barrier model, as well as its protection from a 
proinflammatory agent. It follows a recent report of sim-
ilar activity by Vitamin A (retinoic acid; RA) in the same 
16HBE model (Callaghan et al., 2020).

2   |   MATERIALS AND METHODS

2.1  |  Cell culture

The 16HBE 14o- (16HBE) cell culture was obtained from 
Millipore Sigma (St. Louis, MO) and used between pas-
sages 44–64 (Callaghan et al.,  2020) before returning to 
frozen cell stocks. After reaching confluence, cells were 
trypsinized (0.25% trypsin, 2.21 mM EDTA) (Corning 
Cellgro) and then passaged on a weekly basis by seeding 
1.5 × 106 cells per Falcon 75 cm2 culture flask with 25 ml 
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of Dulbecco's Modified Minimum Essential Medium, 
supplemented with 2 mM L-Glutamine, 10% fetal bovine 
serum, 1% non-essential amino acids, and 1 mM sodium 
pyruvate. Culture medium and additives were products 
of Corning Cellgro, except for the fetal bovine serum 
(Seradigm, VWR, Inc.). Cultures were incubated at 37°C 
in 95% air/5% CO2 humidified atmosphere.

2.2  |  Treatment with TNF-α, calcitriol, 
retinoic acid and U0126

U0126 (Cell Signaling) was dissolved in DMSO to a 50 mM 
stock and then diluted directly into culture medium for 
the appropriate concentration. Matched control condi-
tions used an equivalent amount of DMSO. Calcitriol 
(Enzo Life Sciences and Sigma Aldrich) and Retinoic Acid 
(Sigma Aldrich) were dissolved in ethanol at 50 uM and 
33 mM respectively as stock solutions, to achieve final 
concentrations in culture medium of typically 50 nM and 
50 uM (respectively).Matched control conditions for each 
micronutrient used an equivalent amount of ethanol. 
TNF-α (Peprotech, Inc.) was prepared as a stock solution 
(100 ng/μl) in culture medium and then added to culture 
medium to a final concentration of 150 ng/ml. TNF-α 
stocks were kept frozen at −80°C and thawed only once.

2.3  |  Transepithelial permeability 
measurements

Cells were seeded into sterile Millicell polycarbonate 
(PCF) cell culture inserts (30 mm diameter with 0.4 μm 
pore size [EMD Millipore]) on day 0 at a seeding density 
of 2.0 × 106 cells/insert as described previously (Callaghan 
et al.,  2020). Four Millicell PCF inserts were placed in 
100 mm petri dishes. On days 1 and 3 post-seeding, all 
cell layers were refed with control medium containing 
50 U/ml penicillin and 50 μg/ml streptomycin (Corning 
Cellgro) (2 ml apical, 15 ml basal-lateral). All treatments 
with calcitriol or TNF-α were begun on day 6 (when the 
cell layer barrier was established). Cell layers were refed 
with fresh culture medium on the morning of experiments 
and allowed to incubate at 37°C for 90-min prior to elec-
trophysiological readings. Transepithelial potential differ-
ence was measured at 37°C using 1 M NaCl salt bridges in 
series with calomel electrodes. Transepithelial electrical 
resistance (TER) was measured at room temperature (RT) 
using 1 second, 40 μamp direct current pulses (through 
1 M NaCl salt bridges in series with Ag/AgCl electrodes) 
in a custom- made Lexan chamber designed to hold the 
Millicell PCF inserts. Ohm's law was used to calculate 
TER (V = iR). Current-passing and voltage-measuring salt 

bridges were positioned above and below the center point 
of the cell layers.

Following TER measurements, the basal-lateral me-
dium was aspirated and replaced with 15 ml of medium 
containing 0.1 mM, 0.2 μCi/ml 14C-D-mannitol (Perkin-
Elmer) and incubated at 37°C. Triplicate 50 μl samples 
were taken from the basal-lateral medium to determine 
the specific activity via liquid scintillation counting (LSC). 
Duplicate 250 μl samples were taken from the apical side 
at either 60 or 90 minutes for LSC to determine mannitol 
transepithelial flux rates (Jm) (picomoles/min/cm2).

2.4  |  Immunoblot analyses

Cell layers were harvested from Millicell PCF inserts 
after washing five times in cold PBS. For examining, 
total cell lysates, 500 μl of ice-cold lysis buffer with pro-
tease and phosphatase inhibitors were then added to 
each PCF (Callaghan et al., 2020). For analyzing TJ pro-
teins in subcellular fractions, 600 μl of Buffer A with pro-
tease and phosphatase inhibitors (but without detergent) 
were added. The cell layer was physically scraped off 
the filter at 4°C. The resulting suspension was collected, 
flash-frozen, and stored at −80°C. Once thawed, whole-
cell lysates were prepared by sonication and ultracen-
trifugation. Sonication was performed with the Fisher 
Scientific Sonic Dismembrator (Model 100), Setting 3. 
Ultracentrifugation was performed in a Beckman Model 
L-80 with a Ti-70 rotor at 1,09,000 g for 1 h at 4°C, for both 
whole cell lysates and particulate fractions. Samples of 
these lysates were analyzed by PAGE using a 10%–20% 
gradient Tris-glycine gel (Invitrogen, a division of Thermo 
Fisher Scientific) at 120 V for 80 min. Cell layers harvested 
in Buffer A were treated similarly but after ultracentrifu-
gation the supernatant (cytosolic fraction) was collected, 
followed by solubilization of the pellet (membrane/
cytoskeletal fraction) in lysis buffer for separate PAGE 
analysis. Precision Plus Kaleidoscope Protein Standards 
(Bio-Rad, Inc.) were included on each gel. Proteins 
were transferred at 30 V for 1  h from the gel to a nitro-
cellulose membrane. The membranes were then washed 
three times with PBS-T (0.3% Tween-20) for 10 min and 
blocked with 5% milk/PBS-T at RT for 1  h. Membranes 
were incubated with the specific primary antibody (anti-
rabbit claudins −3 and −7, tricellulin, or occludin; anti-
mouse claudins-1, −4 and −5 [Thermo Fisher Scientific]; 
anti-rabbit claudin-2 [Abcam]), at 0.5 μg/ml in 5% milk/
PBS overnight at 4°C. (In each instance, a 1:1000 dilution 
of each primary antibody was used to probe the immu-
noblot and obtain the final images shown [each with dif-
ferent exposure times]). Membranes were again washed 
three times, 10 min each, with PBS-T, and then incubated 



4 of 16  |      RYBAKOVSKY et al.

with the secondary antibody (rabbit anti-mouse- or goat 
anti-rabbit-IgG antibody labeled with horseradish per-
oxidase [Southern Biotech]) for 1 hour at RT. Membranes 
were incubated with the specific primary antibody (anti-
rabbit claudins −3 and − 7, tricellulin, or occludin; anti-
mouse claudins-1, −4 and −5 [Thermo Fisher Scientific]; 
anti-rabbit claudin-2 [Abcam]), at 0.5 μg/ml in 5% milk/
PBS overnight at 4°C. The membranes were then again 
washed four times, 10 min each, with PBS-T, and treated 
for 10- to 60-s with Western Lightning Plus-ECL chemi-
luminescence reagents (PerkinElmer). The membranes' 
protein band densities were quantified using the BioRad 
ChemiDoc Imaging System. The band densities of the ex-
perimentally treated cell samples were compared to aver-
ages of corresponding control cell samples. All data were 
expressed as the mean ± standard error of the mean and 
statistically analyzed using a paired Student's t-test.

ERK and pERK were analyzed in whole cell ly-
sates. Primary antisera to ERK were obtained from Cell 
Signaling, Inc. Antisera to pERK was a product of Thermo 
Fisher. Caspase-3 and LC3B I/II were also analyzed in 
whole cell lysates. Caspase-3 and LC3B I/II antisera were 
both purchased from Cell Signaling, Inc.

2.5  |  Phase contrast microscopy

For microscopy imaging, cells were seeded in 6 well 
(9.6 cm2) dishes at a density of 1 × 106 cells per well. At 
confluence, cells were treated with U0126 for 24 h. Images 
(100×) were taken using a Nikon Diaphot inverted phase 
contrast microscope.

2.6  |  Statistics

Statistical significance in these studies was tested by 
means of two-sided Student's t tests when comparing a 
single control group with a single experimental group, or 
one-way ANOVA when multiple groups with sufficient 
sample sizes were being compared. In both cases, signifi-
cance was claimed when p < 0.05.

3   |   RESULTS

We observed that treatment with 50 nM calcitriol for 48 h 
significantly improved barrier function of 16HBE cell 
layers based upon two independent metrics. TER was in-
creased significantly by 40% (Figure 1a) and transepithelial 
14 C-D-Mannitol flux (Jm) was decreased simultaneously 
by 25% (Figure 1b), both signifying decreased paracellular 
leak. As shown in Figure 2, a dose dependency of calcitriol 

was observed with maximal effects at a concentration of 
50 nM. An increase in TER was observable at concentra-
tions as low as 1 nM and peaked at 50 nM (Figure  2a). 
For 14C-mannitol flux, we observed effects at calcitriol 
concentrations as low as 5 nM, with maximal decrease of 
leak also at 50 nM (Figure  2b). These barrier-enhancing 
effects of 50 nM calcitriol were observed as early as 17 h 
post-treatment and continued to increase until 48 h based 
upon TER data (Figure 3). However, the time-courses of 
TER and mannitol flux differed. In Figure 3a, the TER in-
crease was maximal at 48 h and then declined (though the 
increase was still significant at 168 h). However, a statisti-
cally significant decrease in Jm was as great at 168 h post-
treatment as it was at 24 h (Figure  3b). The statistically 
significant effects of 50 nM calcitriol on TER and Jm cor-
related with simultaneous changes in specific TJ proteins. 
This effect could be seen in Western immunoblots of junc-
tional proteins in detergent-soluble (particulate) subcellu-
lar fractions (Figure 4b) but not in corresponding cytosolic 
fractions (Figure  4a) from the same cell layer samples, 
where changes did not occur (with a possible exception 

F I G U R E  1   Effect of 50 nM Calcitriol on 16HBE Barrier 
Function. (a) TER and (b) transepithelial mannitol flux rate 
were completed as described in Material and Methods, 48 h after 
treatment. Data are represented as mean ± standard error for n = 12 
cell layers per condition. ***p < 0.001. (Student's t test, two-tailed).
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of a decrease in tricellulin). Changes could likewise not 
be seen in analyses of TJ proteins in whole cell lysates. In 
the detergent-soluble fractions, a statistically significant 
change (a 40% decrease) was seen only for claudin-2. The 
TJ proteins, claudin-1, −3, −4, −5, −7 and occludin did 
not exhibit any change in the detergent-soluble fraction as 
a result of calcitriol treatment.

Callaghan et al. (2020) (Callaghan et al., 2020) showed 
that the proinflammatory cytokine, Tumor Necrosis 
Factor-α (TNF-α), decreases 16HBE barrier function as 
evidenced by reduced TER and increased Jm. Retinoic 
acid was able to attenuate this induced leak by greater 
than 50%. In Figure  5, we observed that calcitriol also 
attenuated this TNF-α-induced leak. The inhibition of 
TNF-α-compromised barrier function seen with calcitriol 
was however weaker than what was observed with reti-
noic acid. The effects of TNF-α on both TER and Jm were 
reduced approximately 20% and 30% respectively when 
treated simultaneously with TNF-α and calcitriol for 48 h, 

compared to the changes seen with TNF-α alone. (This is 
calculated based on the percent change from the TER and 
Jm value of TNF alone vs the change observed with TNF-α 
and the maximal dose of calcitriol). Both measurements 
evidenced significant reduction of TNF-α-induced leak 
starting at a calcitriol concentration of 5 nM, similar to 
the concentration dependence of 16HBE barrier improve-
ment by calcitriol in the absence of TNF- α (Figure  2). 
Moreover, 24 hr. preincubation with calcitriol did not in-
duce any further protection from the barrier compromise 
seen with simultaneous treatment of calcitriol and TNF-α 
(Figure  6). This experimental variation was performed 
to enable calcitriol to diffuse into the cell in advance of 
TNF-α binding to its cell surface receptor.

Claudin-2 offers an example of a TJ protein that changes 
in its abundance not only with respect to calcitriol treat-
ment, but also with respect to calcitriol's effect on TNF- α 

F I G U R E  2   Concentration Dependence of Calcitriol Effects on 
16HBE Barrier Function. (a) TER and (b) transepithelial mannitol 
flux rate were completed as described in Materials and Methods, 
48 h after calcitriol treatment. n = 16 for control cell layers, n = 8 
for 0.2 nM, 1 nM, 25 nM and 50 nM, n = 12 for 5 nM, n = 4 for 
100 nM calcitriol - treated cell layers. **p < 0.01, ***p < 0.001, One 
Way ANOVA, Holm-Sidak Method.

F I G U R E  3   Time Course of Calcitriol Treatment on 16HBE 
Barrier Function. (a) TER and (b) transepithelial mannitol flux 
rate were completed as described in Materials and Methods at the 
appropriate time point following treatment with 50 nM calcitriol. 
n = 4 cell layers for 17, 168 h. n = 8 cell layers for 24, 48, 96 h. 
*p < 0.05, **p < 0.01, ***p < 0.001 versus time matched control. 
(Student's t test, two-tailed). The dotted line indicates 100% (of 
time-matched control), i.e. no effect.
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-induced TJ changes in 16HBE cell layers (Figure  4b). It 
thereby indicates that calcitriol's ability to blunt the effect of 
TNF-α on 16HBE barrier compromise is due at least in part 
to an effect on the TJ complex. Exposure of 16HBE cell lay-
ers to TNF- α for 48 h more than doubled claudin-2 levels in 
particulate fractions of cell lysates (Figure 7). Simultaneous 
exposure of these cell layers to TNF-α and 50 nM calcitriol 
significantly reduced this TNF-α-induced claudin-2 eleva-
tion by almost 30%, although claudin-2 levels remained el-
evated above control levels. This significant partial reversal 
of TNF- α effects on specific TJ proteins was however not 
observed with claudins −4, −5 or occludin.

To investigate the potential role of the Raf/MEK/ERK 
pathway in regulation of 16HBE barrier function, we first 
used the well-described ERK1/2 inhibitor, U0126. When 
16HBE cell layers were treated with 100 μM U0126 for 48 h, 
a significant and dramatic increase in TER was observed 
(Figure 8c), evidence of ERK regulation of 16HBE barrier 

function. This improvement of TER was reflected in a change 
in confluent cell layer morphology shown in Figure  8a,b. 
24 hr treatment with U0126 dramatically increased dome 
formation in the confluent 16HBE monolayer, consistent 
with the observed increase of 16HBE TER by U0126.

However, treatment of 16HBE cell layers with cal-
citriol, at a concentration and timeframe that gave con-
sistent physiological effects, did not show any significant 
effect on pERK levels in these same cell layers, suggesting 
that the calcitriol effect on barrier function is not proceed-
ing through the Raf/MEK/ERK pathway. As shown in 
Figure 9a,b, calcitriol did not affect the level of pERK in 
Western immunoblots of whole cell lysates of cell layers 
exhibiting calcitriol-induced barrier improvement. There 
was also no effect on total ERK (Figure 9c,d).

In the presence of TNF- α, calcitriol may be acting 
through a non-ERK pathway. As shown in Figure  10, the 

F I G U R E  4   Effect of Calcitriol on 16HBE Tight Junctional 
Proteins. Confluent cell layers were treated for 48 h with 50 nM 
calcitriol, harvested, lysed and Western Immunoblots were 
performed for cytosolic (a) and detergent soluble fractions (b) 
as described in Material and Methods. Data are represented as 
mean ± standard error for n = 4 cell layers for each condition. 
**p < 0.01. (Student's t test, two-tailed). Yellow bars indicate control 
cell layers, red bars indicate calcitriol -treated cell layers.

F I G U R E  5   Effect of Calcitriol on TNF-α-Induced 16HBE 
Transepithelial Leak. (a) TER and (b) transepithelial mannitol 
flux rate were measured as described in Materials and Methods, 
48 h post simultaneous treatment. Control and 150 ng/ml TNF-α 
conditions had n = 6 cell layers, 50 nM calcitriol + TNF-α had 
n = 14 cell layers. All other conditions had n = 8 cell layers. NS 
indicates no significant difference versus the TNF-α condition. 
*p < 0.05, **p < 0.01 versus TNF-α condition. (Student's t test, two-
tailed).
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dramatic, greater than 50% decrease in 16HBE cell layer 
TER caused by TNF- α exposure, was partially reversed by 
U0126 as well as by calcitriol. Simultaneous treatment of 

TNF-α-treated cell layers with both U0126 and calcitriol pro-
duced an additive increase, significantly above the increase 
ensuing from U0126 or calcitriol alone. Taken together, this 
suggests that a non-ERK pathway may be involved in the 
protective action of calcitriol on TNF- α -treated cell layers.

Figure  11a,b provide further support for calcitriol 
working through a non-ERK pathway to reduce the bar-
rier compromise caused by TNF-α, because here it can be 
seen that the pronounced (greater than 100%) increase in 
pERK induced by TNF- α is unaffected by calcitriol. U0126 
on the other hand dramatically reduced pERK levels. 
Neither TNF- α, calcitriol nor U0126 were seen to affect 
levels of total ERK (Figure 11c,d).

Since the calcitriol modification of TNF-α -induced 
barrier compromise apparently did not proceed via the 
ERK pathway, the possibility existed for calcitriol affecting 
barrier function by TNF-α -induced cell death within the 
epithelial barrier. Cell death is a highly obvious source of 
epithelial barrier compromise (although the exact context 
in which it occurs can determine whether it actually con-
tributes to barrier compromise) (Gitter et al., 2000; Peralta 
Soler et al., 1996). We therefore tested for calcitriol effects 
on 16HBE cell death by testing for calcitriol effects on the 
apoptotic marker, caspase-3, and the autophagy markers, 
LC3B-I/II. As shown in Figure 12a,c, however, TNF-α had 
no significant effect on 16HBE caspase-3 levels, suggesting a 
lack of TNF-α -induced apoptosis for 16HBE cell layers, and 
thus seemingly ruling out apoptosis as a means by which 
calcitriol could be modifying the TNF-α -induced decrease 
of barrier function. However, TNF-α induced a significant 
increase in 16HBE LC3B-II levels at 48 h, suggesting that 
TNF-α -induced autophagy could be contributory to barrier 
compromise here. But calcitriol did not reduce the LC3B-II 
elevation caused by TNF-α (Figure 12b,d), suggesting that 
calcitriol's reduction of TNF-α -induced barrier compromise 
was not proceeding via effects on autophagic cell death.

It has been reported that retinoic acid and calcitriol 
can have additive effects on certain cell and tissue proper-
ties (Anand & Kaul, 2003; Cantorna et al., 2019; Surman 
et al.,  2016). We had earlier demonstrated dramatic im-
provement of 16HBE barrier function by retinoic acid 
(Callaghan et al., 2020). In Figure 13, however, no additive 
effect was seen on TER after simultaneous treatment with 
50 μM retinoic acid and 50 nM calcitriol, the concentra-
tions at which both micronutrients exert maximal effects 
on 16HBE barrier function.

4   |   DISCUSSION

Our group recently reported the improvement of epithelial 
barrier function by retinoic acid (RA), as well as RA's abil-
ity to reduce TNF- α- induced barrier leak in the 16HBE 

F I G U R E  6   Effect of Preincubation with Calcitriol on TNF-
α-Induced 16HBE Transepithelial Leak. TER was measured as 
described in Materials and Methods, 48 h post 150 ng/ml TNF-α 
treatment. n = 4 cell layers per condition. *p < 0.05 versus TNF. 
NS indicates no significant difference between TNF-α + calcitriol 
and TNF-α + preincubation calcitriol. (Student's t test, two-tailed.) 
“preinc” refers to 24 h preincubation with 50 nM calcitriol before 
the 48 h simultaneous TNF-α + calcitriol treatment.

F I G U R E  7   Effect of Calcitriol on TNF- α-Induced Changes 
in 16HBE Claudin-2 Levels. Confluent cell layers were treated 
with TNF-α or calcitriol + TNF-α for 48 h as described in Materials 
and Methods. (a) Control samples [lanes A1–A3], TNF- α-treated 
samples [lanes B1–B3], TNF-α + calcitriol-treated samples [C1–C3]. 
(b) Optical densities of Claudin-2 protein bands (n = 3 cell layers 
per condition). ***p < 0.001 versus control cell layers; ##P < 0.01 
versus TNF-α -treated cell layers. (Student's t test, two-tailed).
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F I G U R E  8   Effect of the ERK 
Inhibitor, U0126, on Dome Formation 
and Transepithelial Electrical Resistance 
in 16HBE cell layers. Phase contrast 
image of (a) control cell layers and (b) cell 
layers treated with 100 μM U0126 for 24 h. 
Red arrows indicate domes. Bar = 100 
microns. TER (c) was measured 72 h post 
U0126 treatment as described in Material 
and Methods. n = 6 cell layers per 
condition. ***p < 0.001 versus control cell 
layers. (Student's t test, two-tailed).

F I G U R E  9   Lack of Effect of Calcitriol on 16HBE pERK Levels. Confluent cell layers were treated with control or 50 nM calcitriol-
supplemented media for 24 h prior to an additional treatment with respective media for 30 min as described in Materials and Methods. 
Cell layers were harvested, lysed and PAGE immunoblots were performed for phosphorylated-ERK-1/2 (a) and total ERK-1/2 (c). Lane 
A: control; lane B: calcitriol-treated. Two of three sample lanes are shown. Band densities of 3 separate cell samples were quantified as 
described in Materials and Methods (b and d). Bars represent mean ± SEM for 3 cell layers. NS = not significant vs control cell layers. 
(Student's t test, two-tailed).
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14o- airway epithelial model (Callaghan et al., 2020). We 
expand on that work in our current investigation, now 
showing a calcitriol-induced improvement of barrier 
function in this same human airway epithelial cell cul-
ture model. Calcitriol significantly increased 16HBE bar-
rier function as evidenced by a 40% increase in TER and 
a 25% decrease in transepithelial leak of 14C-D-mannitol 
(Figure 1). This was a concentration dependent decrease 
in paracellular leak (Figure 2) that could be observed by 
17 h and continued through 7 days (Figure 3). This is in 
accordance with previously mentioned literature showing 
that Vitamin D is capable of both improving and protect-
ing barrier function in several epithelial models including 
retinal, intestinal, and urinary bladder (Chen et al., 2018; 
Fernandez-Robredo et al.,  2020; Lee et al.,  2019; Li 
et al., 2015; Ma et al., 2020; Mohanty et al., 2020).

It should be mentioned that the DMEM medium 
used to grow and maintain the 16HBE epithelial has no 
Vitamin D or Vitamin A content of its own. The only 
Vitamin A and Vitamin D in our final culture medium 
would come from the Fetal Bovine Serum (FBS) compo-
nent of the culture medium. However, not only are these 
levels far below what we supplement in our studies, but 
our use of 10% FBS reduces these contributions even fur-
ther. FBS has been reported to contain 500 nM Vitamin A 
and approximately 40 nM Vitamin D (Nelson et al., 2016; 
Randolph & Simon, 1993). Using 10% FBS in our 16HBE 
culture medium would result in a Vitamin A level of 
50 nM and a Vitamin D level of 4 nM. These levels are 

far below our reported supplemented levels of 50 μM and 
50 nM for Vitamins A and D respectively. In fact, the con-
centration dependence of Figure 2 for calcitriol could not 
have exemplified the nicely graduating effects of increas-
ing concentration if we had started with a high baseline 
level of Vitamin D in the culture medium. The fact that 
barrier-improving activity of key micronutrients occurs 
at levels above those normally present in serum (and in 
Recommended Daily Allowances) is a topic discussed in a 
recent review from our group (DiGuilio et al., 2022).

Correlating with the significant effects of calcitriol on 
barrier function, a change in the amount of one specific TJ 
protein, claudin-2, could be observed in detergent-soluble 
fractions of the cells after calcitriol exposure, although 
occludin and claudins −1, −3, −4, −5 and −7 were unaf-
fected (Figure 4). Cytosolic fraction levels of all of these 
claudins were unaffected by calcitriol, and what is note-
worthy in a procedural sense is that the change in clau-
din-2 could not be observed in whole cell lysates (data 
not shown). Overall, these data indicate that changes in 
barrier function induced by calcitriol can be attributed at 
least in part to induced changes in TJ complexes. This sit-
uation is similar to our previous study with RA, where RA 
treatment dramatically increased 16HBE barrier function 
and also modified its TJ proteins, notably increasing levels 
of claudin-4 by over 60% in Western immunoblots of cell 
layer lysates (Callaghan et al., 2020). Worth noting here is 
that Li et al. (2015) (Li et al., 2015) reported a lack of effect 
of Vitamin D treatment of 16HBE cell layers on levels of 
the tight junctional proteins, ZO-1 and occludin in whole 
cell lysates.

Calcitriol's partial inhibition of the barrier compro-
mise of 16HBE cell layers by TNF-α (Figure 5) also cor-
related with changes in the level of abundance of at least 
one TJ protein. As shown in Figure  7, TNF-α-treatment 
(48 h) significantly increased the level of claudin-2 in the 
detergent-soluble fraction. Simultaneous treatment with 
TNF-α and calcitriol resulted in a significantly lower level 
of claudin-2, below the level achieved with TNF-α treat-
ment alone. This provides further substantiation that cal-
citriol is achieving its barrier function effects at least in 
part through modification of the 16HBE TJ complexes.

The initial discovery and description of claudins 
showed that these proteins localized to the region of tight 
junctions and actually constituted tight junction strands 
(Furuse et al., 1999). Later studies would show that clau-
dins were conferring true barrier function on a cell layer 
in terms of transepithelial electrical resistance and inhi-
bition of transepithelial paracellular diffusion (Sonoda 
et al., 1999). Many years of research from many laborato-
ries would generate a concept regarding claudins as either 
pore-forming (increasing barrier permeability) or seal-
ing (decreasing barrier permeability), with claudins −2 

F I G U R E  1 0   U0126 and Calcitriol Have Additive Effects 
on TNF-α-Induced Compromise of Transepithelial Electrical 
Resistance Across 16HBE Cell Layers. Cell layers were pretreated 
for 24 h. with 100 μM U0126 and/or 50 nM calcitriol followed 
by a 48-hour treatment with 150 ng/ml TNF-α ± U0126 and/or 
calcitriol. TER was then measured as described in Material and 
Methods. n = 6 cell layers per condition ± SEM. ***p < 0.001 versus 
control, ##p < 0.01 versus TNF-α, #p < 0.05 versus Vit D + TNF-α or 
U0126 + TNF-α. (Student's t test, two-tailed).
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and −10 being premier “pore formers” and claudins −1, 
−3 and −4 being premier “sealing claudins” (Rosenthal 
et al.,  2017). However, it was also known that claudins 
have the ability to self-associate not only in homomeric 
pairings but also in heteromeric pairings as well (Furuse 
et al., 1999). That ability of the 20+ members of the clau-
din family to engage in heteromeric interactions suggests 
that labeling specific claudins in one class or the other 
may however be somewhat complicated as it suggests that 
each claudin's functionality is dependent upon molecular 
associations with neighboring – and potentially different - 
claudins. Consider that 20+ different claudins engaging in 
various heteromeric pairing creates a great deal of permu-
tations. Those heteromeric interactions are highlighted by 
recent studies showing a functional interaction between 

claudins −5 and −18 as well as claudins −2 and −4 
(Schlingmann et al.,  2016; Shashikanth et al.,  2022). 
That being said, our results however do support the ca-
nonical view in that the increased TER observed for cal-
citriol treatment of 16HBE cell layers did correspond in 
our study with significantly decreased claudin-2 levels in 
particulate fractions (Figure 4b), what one would predict 
from a “pore-forming” claudin. Regarding TNF-α-induced 
decrease of TER, we observed a significant increase in 
claudin-2 levels with TNF-α exposure (Figure  7), an in-
crease that was significantly reduced by simultaneous 
exposure of TNF-α and calcitriol. Again, claudin-2 was 
behaving here as a paradigm pore-forming claudin since 
its increase with TNF-α correlates with a sharp decrease 
in TER, while co-incubation with TNF-α and calcitriol 

F I G U R E  1 1   Effect of Calcitriol and U0126 on the TNF-α-Induced Increase of 16HBE pERK Levels. Confluent cell layers were treated 
with control or 50 nM calcitriol-supplemented media for 24 h prior to treatment with control, 150 ng/ml TNF-α alone, TNF-α + 50 nM 
calcitriol or TNF-α + 100 μM U0126 for 30 minutes as described in Materials and Methods. Cell layers were harvested, lysed and PAGE/
immunoblots were performed for phosphorylated-ERK-1/2 (a) and total ERK-1/2 (c). Lane A: control; lane B: TNF-α -treated; lane 
C: calcitriol + TNF-α –treated; lane D: U0126 + TNF-α -treated. One of three sample lanes are shown. Band densities for 3 separate 
immunoblots were quantified as described in Materials and Methods (b and d). Bars represent mean ± SEM for 3 cell layers. ***p < 0.001 
versus control; NS (not significant) versus TNF-α (b) or versus control (d), ###P < 0.001 versus TNF-α (b). (Student's t test, two-tailed).
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significantly increased TER above the level seen with 
TNF-α alone. TNF-α is well known to increase claudin-2 
while decreasing barrier function (Droessler et al., 2022). 
The kinetics of the effects on claudin-2 can however be 
complex (Amoozadeh et al.,  2015). Vitamin D has been 
observed to correlate with reduced expression of claudin-2 
(Meckel et al., 2016; Pan et al., 2012).

Li et al. (2015) (Li et al., 2015) had earlier shown that 
1,25-dihydroxyvitamin D3 attenuated the effect of toluene 
diisocyanate-induced airway barrier disruption through 
the ERK pathway. ERK activity has been shown to neg-
atively regulate epithelial barrier integrity in a variety of 
epithelial models including lung (Aggarwal et al.,  2011; 
Barbin et al.,  2001; Mullin, Leatherman, et al.,  2005; 
Petecchia et al.,  2012). In this current study, ERK inhi-
bition by U0126 improved barrier function outright, as 
shown by enhancing electrical resistance and increasing 
dome formation in control 16HBE cell layers, a morpho-
logical phenomenon indicative of improved TJ complexes 
(Figure 8a–c). This ratifies the conclusion by others that 
MAPK signaling can play a regulatory role in 16HBE bar-
rier function (Callaghan et al., 2020; Durgan et al., 2015; 

F I G U R E  1 2   Effect of TNF- α and Calcitriol on 16HBE Caspase-3 and LC3B Levels. Confluent cell layers were treated with calcitriol, 
TNF-α, or calcitriol + TNF-α for 48 h as described in Materials and Methods. (a) Caspase-3 and (b) LC3B-I and -II (Control samples [lanes 
A1–A2], TNF- α-treated samples [lanes B1–B2], calcitriol-treated samples [lanes C1–C2], TNF-α + calcitriol-treated samples [lanes D1–D2]). 
Optical densities of caspase-3 (c) and LC3B-II (d) protein bands (n = 3 cell layers per condition (the enclosed blots [a & b] showing 2 of 3 cell 
layers); ***p < 0.001 versus control cell layers; NS = not significant versus control cell layers or no significant difference between the TNF-α 
and calcitriol + TNF-α conditions. (Student's t test, two-tailed).

F I G U R E  1 3   Effect of Retinoic Acid and Calcitriol on 16HBE 
Barrier Function. TER was performed as described in Material 
and Methods, 48 h after treatment with 50 nM calcitriol and/or 
50 μM retinoic acid. n = 20 for control and retinoic acid cell layers, 
n = 28 for calcitriol cell layers, n = 32 for calcitriol + retinoic acid 
cell layers. ***p < 0.001 versus control condition. NS indicates no 
significant difference for retinoic acid vs combination conditions 
(Student's t-test, two-tailed).
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Li et al., 2015). Our results however show no effect of cal-
citriol on pERK (or total ERK) levels in 16HBE cell layers 
(Figure 9).

In the presence of TNF-α, calcitriol and U0126 ex-
hibited small but significant additive effects on TER 
(Figure  10), suggesting that calcitriol in part inhib-
its TNF-α compromise of 16HBE barrier function by 
a pathway other than ERK. The lack of effect of cal-
citriol on the elevated level of pERK caused by TNF-α 
(Figure  11) is further evidence of this lack of involve-
ment of the ERK pathway in calcitriol's effect on TNF-α 
-compromised barrier function in 16HBE cell layers. 
At present we have however not identified this path-
way by which calcitriol is countering TNF-α -induced 
barrier compromise. Potential candidates for this non-
ERK pathway by which calcitriol could regulate barrier 
function could include pathways leading to cell death, 
as there is extensive published literature describing 
calcitriol-mediated inhibition of both apoptosis and au-
tophagy (Langberg et al.,  2009; Lyu et al.,  2020; Xiong 
et al., 2021). However, the lack of any significant effect 
of TNF-α on caspase-3 levels in 16HBE, and the lack 
of effect of calcitriol on the increase in LC3B II levels 
caused by TNF-α (Figure 12), suggest that this unknown 
calcitriol pathway is not a death pathway. Future work 
will focus on identifying the nature of this non-ERK 
pathway by which calcitriol protects the 16HBE cell 
layer from TNF-α's barrier compromising effects.

Certain studies have shown synergistic effects of 
Vitamins A and D on various cell properties (Anand & 
Kaul,  2003; Cantorna et al.,  2019; Surman et al.,  2016). 
However, to our knowledge there are no existing reports 
of this combination having an additive effect on epithe-
lial barrier function. Given that these agents each produce 
unique effects transduced by different signaling pathways, 
the combination could theoretically result in an additive 
effect. However, in this study, using maximally effective 
concentrations of each vitamin, simultaneously admin-
istered calcitriol did not significantly improve on the ef-
fect of retinoic acid on transepithelial electrical resistance 
(Figure 13).

Further experiments are needed to more fully eval-
uate the mechanism involved in calcitriol's improve-
ment of barrier function of 16HBE cell layers. However, 
the enhancement of control cell layer barrier function 
and significant abrogation of TNF- α's deleterious ef-
fects demonstrated by calcitriol in this study suggests 
that Vitamin D supplementation could play a beneficial 
role in protecting airway epithelial barrier function in 
specific disease morbidities. This is of particular im-
portance to consider given the current COVID-19 ep-
idemic and disease outcomes associated with Vitamin 
D status. Low Vitamin D levels have been associated 

with an increased risk of COVID infection and hospi-
talization (Liu et al., 2021; Merzon et al., 2020; Munshi 
et al.,  2021). Patients with Vitamin D deficiency were 
5-fold more likely to be infected with COVID-19, after 
adjusting for age (Katz et al.,  2021). Additionally, 
(Daneshkhah et al., 2020) Daneshkhah et al. (2020) re-
port a potential role of Vitamin D in reducing the sever-
ity of the “cytokine storm” generated in COVID patients 
in terms of a Vitamin-D-associated reduction in pro-
inflammatory cytokine levels and C-Reactive Protein 
levels. A clinical case study of four Vitamin D-deficient 
COVID-19 patients found that high dose ergocalciferol 
supplementation decreased hospital stay (Ohaegbulam 
et al., 2020). Additionally, a pilot study of COVID-19 in-
patients demonstrated that calcifediol supplementation 
reduced the need for ICU treatment (Entrenas Castillo 
et al., 2020). The ability of calcitriol to improve and pro-
tect airway epithelial barrier function in our current 
study suggests that Vitamin D's beneficial effects in 
COVID may trace not simply to effects on the virus itself 
but in addition to support of underlying epithelial tissue 
physiology before and during an infection. While it is 
true that research findings coming from human epithe-
lial cell culture models cannot generate clinically appli-
cable conclusions due to the limitations of the models, 
the studies can however validly generate very strong hy-
potheses to test further using animal models and patient-
based studies.

There is thus abundant and growing evidence to sug-
gest a potential adjuvant clinical utility for Vitamin D sup-
plementation in improving barrier function and reducing 
inflammatory response-based damage to the airway bar-
rier, warranting future research into the value of its use 
in treatment of respiratory infections such as SARS-CoV-2 
and airway disease generally. Vitamin D therapy may re-
duce morbidity and thereby be pivotal in allowing a pa-
tient's own immune defenses and physiology to achieve 
more favorable clinical outcomes. This general issue of 
prophylactic and therapeutic utility of Vitamin D as well 
as a wider range of micronutrients in a spectrum of dis-
eases is the subject of a very recent review on this topic 
(DiGuilio et al., 2022).

In summary, our results have demonstrated that: (1) 
calcitriol can improve normal 16HBE epithelial bar-
rier function as well as partially protect the 16HBE cell 
layer from TNF-α-induced barrier compromise; (2) the 
calcitriol effects appear mediated at least in part by in-
duced changes in the TJ complex, evidenced by effects 
on claudin-2 abundance; (3) although the ERK path-
way appears involved in normal 16HBE barrier func-
tion and in the compromise of that barrier function by 
TNF-α, the protection accorded by calcitriol appears to 
proceed through a non-ERK pathway; (4) the nature of 
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that non-ERK pathway in 16HBE cell layers is as yet un-
known but does not appear to be a cell death-mediating 
pathway.
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